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Abstract—The Automatic Dependant Surveillance-Broadcast
(ADS-B) message scheme was designed without any authentica-
tion or encryption of messages in place. It is therefore easily
possible to attack it, e.g., by injecting spoofed messages or
modifying the transmitted Global Navigation Satellite System
(GNSS) coordinates. In order to verify the integrity of the
received information, various methods have been suggested, such
as multilateration, the use of Kalman filters, group certification,
and many others. However, solutions based on modifications of
the standard may be difficult and too slow to be implemented
due to legal and regulatory issues. A vantage far less explored
is the location verification using public sensor data. In this
paper, we propose LoVe, a lightweight message verification
approach that uses a geospatial indexing scheme to evaluate
the trustworthiness of publicly deployed sensors and the ADS-B
messages they receive. With LoVe, new messages can be evaluated
with respect to the plausibility of their reported coordinates
in a location privacy-preserving manner, while using a data-
driven and lightweight approach. By testing our approach on
two open datasets, we show that LoVe achieves very low false
positive rates (between 0 and 0.001 06) and very low false negative
rates (between 0.000 65 and 0.003 34) while providing a real-time
compatible approach that scales well even with a large sensor
set. Compared to currently existing approaches, LoVe neither
requires a large number of sensors, nor for messages to be
recorded by as many sensors as possible simultaneously in order
to verify location claims. Furthermore, it can be directly applied
to currently deployed systems thus being backward compatible.

Index Terms—Wireless Security, Airplane Security, ADS-B,
Location Verification, H3 Geospacial Index

I. INTRODUCTION

The ADS-B protocol is a system designed to monitor
aircraft positions via constantly transmitted messages. Indeed,
aircraft use ADS-B to communicate with ground control
stations, other aircraft, or other ADS-B enabled receivers [1].
While used as a secondary source of real-time air traffic
monitoring to radar systems in metropolitan areas, it is often
the single source of information in sparsely populated areas,
difficult terrain and over oceans. Thanks to its broadcast na-
ture, any ADS-B enabled device can receive ADS-B messages

and obtain sensitive information on aircraft, such as their
identifier and location. Also, commercial off-the-shelf (COTS)
devices with limited resources can be used to receive and
collect ADS-B messages and, hence, aircraft information. This
lead to the creation of the OpenSky Network [2], where aircraft
are monitored in a crowd-sourced fashion. The possibility of
collecting aircraft information is further facilitated by the fact
that, by design, ADS-B does not include any encryption or
authentication measures [3]. While this provides fast access
to aircraft data to be used for real-time monitoring, the lack
of security measures provides attackers with the possibility
for packet spoofing. In particular, an attacker might be able
to create packets and inject false information on the presence
of airplanes, or report false location claims. In fact, ADS-B
utilises the GNSS system to retrieve an aircraft’s location, but
does not encrypt or sign this information, which can hence
be modified by an attacker. The consequences of these attacks
range from mild (e.g., distraction on the flight deck or in the
control room) to more severe such as violations of mandatory
safety separations, and eventually aircraft collisions [4]. The
implementation of these attacks is not only an academic issue:
it also captured the attention of a wider audience [5], [6].
Therefore, it is fundamental to develop solutions for real-time
and scalable verification of ADS-B messages.

To verify the authenticity of ADS-B messages, the literature
proposes three different approaches. The first approach is to
redesign the ADS-B protocol itself to include cryptographic
means to guarantee integrity and authentication. This could
for example be done using public key-based, identity-based
message encryption, or via Message Authentication Codes
(MACs) [3]. However, ADS-B is slow to be deployed due
to different countries’ regulations and the scale on which
a modification has to be rolled out. Therefore, a change in
protocol is unlikely to happen any time soon [7].

The second approach entails fingerprinting the signals. This
does not require a change in protocol; the idea is to perform



software-based, hardware-based or channel-based fingerprint-
ing [3].

The third approach attempts to verify the signal origin:
the use of Multilateration (MLAT) has been suggested to
approximate the legitimate origin, and additionally the use of
Kalman filtering or group certification using signals received
by other airplanes. While this system is very reliable, it
is costly as it requires a gigantic amount of sensors to be
deployed to receive accurate measurements: Using a test set
of 8 sensors distributed within a 100 km radius, Strohmeier et
al. [8] show that MLAT is only applicable to 9.73 % of the
messages due to the limited amount of sensors that record the
same message. Another MLAT-based approach to determine
the trustworthiness of ADS-B messages is MAVPro [9], a
message verification protocol. The authors use MLAT in areas
with large sensor coverage, and additionally rely on various
other information like predicted trajectory information, preset
anchors and information on flight tracks in areas with lower
coverage.

Jansen et al. [7] propose a Machine Learning (ML) approach
utilizing vectorsets and evaluating ADS-B sensor response
patterns by applying a random-forest model. When evaluating
ADS-B data with machine learning, two problems arise. First,
the feature space does not scale: Each sensor corresponds to
a feature, which means that the feature space grows quadrati-
cally with increasing local coverage. In addition, an algorithm
trained with data collected from a certain area cannot be
transferred to other areas, because the feature space would
change. Second, the chosen feature space is only slightly
characteristic. Especially in areas with low sensor coverage,
the necessary redundancy to generate characteristic patterns is
missing.

Other approaches of signal localisation are group locali-
sation using a fixed set of aircraft as a group [10], distance
bounding [4] or fingerprinting techniques on the physical layer
[3], [11] or the use of Kalman filters to estimate the future
trajectory of an aircraft via recent directional information [12].

In this paper, we propose Location Verification (LoVe), a
simple yet effective approach based on data collected from
public sensors for the verification of aircraft location claims
sent via ADS-B messages. While our approach also uses
distributed sensors, we choose to use an ML-free approach to
verify signal authenticity: We take measurements on the range
of coordinates a specific sensor can normally receive, and can
thereby infer whether a newly received set of coordinates is
within the range of typically received signals. We do this by
mapping historic flight data into a representative map, through
which current data can be evaluated with respect to plausibility
of the signal. We are, to the best of our knowledge, the
first to combine this with the use of a geospatial indexing
system, resulting in a system that scales well even with a very
high sensor count. Furthermore, it performs knowledge-based
comparisons without resorting to costly ML-computations,
while maintaining sensor location privacy. It achieves real-
time compatible execution times while maintaining very low
false positive rates between 0 and 0.001 06 and very low false

negative rates between 0.000 65 and 0.003 34. LoVe is also
easily extendable and can be integrated into various existing
schemes. To this end, we contribute the following:

• We propose a lightweight, privacy-preserving classifica-
tion of sensors to evaluate the plausibility of received
messages.

• We implement the classification scheme by calculating
the message distribution per sensor for each hexagon over
the hexagonal geospacial indexing system H3.

• We test and evaluate the proposed method using real-
world data provided by the OpenSky Network and Flight-
radar24 and multiple different hexagonal resolutions.

• We provide our implementation in a public repository1

for others to test and use.
This paper is structured as follows: In Section II, we

first provide a background on ADS-B and the system and
threat model. We then introduce our approach – LoVe – in
Section III. This section contains our detailed approach, data
acquisition, the experimental analysis and the verification eval-
uation. Section IV then proposes future work and concludes
the paper.

II. PRELIMINARIES AND MODELS

In this section, we provide background information on ADS-
B and describe the system and threat model.

A. Background on ADS-B

ADS-B is a broadcasting system in which aircraft transmit
status information every 0.5 seconds [8]. ADS-B packets are
112 bit to 272 bit long packets, depending on the link standard
(UAT or Extended Squitter) [4]. They consist of a preamble,
the downlink format, capabilities, the aircraft address, an ADS-
B data field and a parity check. The ADS-B Data field contains
information on altitude, speed, destination, the airplane ID and
coordinates that are determined via GNSS.

A distinction is made between ADS-B Out devices, which
are ADS-B transmitters, and ADS-B In, the receiving side.
Ground stations require ADS-B In functionality to receive the
ADS-B signals. In European airspace, airplanes heavier than
5.7 tons or faster than 250 knots are required to transmit their
ADS-B data via ADS-B Out, while the use of ADS-B In for
airplanes is voluntary [13].

The ADS-B broadcast system does not include a collision
detection mechanism for messages, and neither any means of
security to ensure confidentiality or integrity. It is therefore
possible to spoof messages, inject content into transmissions
and to jam communications [3].

B. System Model

We consider a system where legitimate aircraft periodically
send ADS-B messages, which are then recorded by geo-
graphically distributed ground sensors. Aircraft use both their
local information (e.g., identifier) and information from GNSS
satellites to create packets containing air traffic monitoring

1https://github.com/heddha/LoVe



information according to the ADS-B standard. All ground sen-
sors share their received messages in a crowdsourcing fashion,
reporting their measurements to a central server. We assume
that the central server implements our location verification
approach to detect the presence of malicious aircraft with
the aim of securing the air traffic control-based management
operations.

C. Attacker and Threat Model

We consider an attacker able to monitor and send ADS-B
messages via COTS equipment, e.g., a Software Defined Radio
(SDR). We also assume that the attacker may control various
stationary ADS-B transmitters. Based on the Federal Aviation
Administration measurements2, a strong enough ADS-B signal
can be captured by sensors up to a maximum radius of 240 km.
A stationary ADS-B transmitter transmitting messages with
forged coordinates to simulate an airplane would therefore be
in a legitimate coordinate range of the airplane for about 41
minutes when simulating an airplane travelling at a speed of
about 600-800 km/h and at an altitude of 10.9 km. During this
time, the signals would constantly be received by the same
sensors, while the transmitted coordinates would place the
aircraft in an area of less and less confidence, i.e. the received
coordinates are implausible with respect to the position of the
sensor that recorded it.

Our threat model considers various attacks, which we elab-
orate on in the following.
Message Injection and Ghost Plane Injection. As ADS-
B messages are neither authenticated nor encrypted, it is
easily possible to send legitimate looking messages. The
attacker can, on the one hand, inject messages that appear like
those of nearby planes, but possibly with altered details like
coordinates or altitude. This way, it may look like the existing
airplane is diverging from its original path and heading in a
different direction. On the other hand, the attacker can also
inject messages that appear like signals sent by a legitimate
looking but nonexistent aircraft, so called ghost plane. Both
modified messages and injected ghost planes would appear
on surveillance monitors and could potentially disrupt normal
flight procedures and can cause other airplanes to modify their
course to avoid collisions unless a verification of origin is
performed on the message.
Location Spoofing. Location spoofing of ADS-B messages
can be done in two different ways, i.e., i) via GNSS or ii)
via message modification. In the first case, programs such as
gps-sdr-sim3 can be used to spoof GNSS receivers using a low-
cost SDR like the HackRF and a current map of the satellite
constellations. This way, a constellation containing up to 12
virtual satellites can be spoofed; these can then “send” spoofed
signals which appear like legitimate signals and are used as the
basis for the positional computations [14]. The second means
of location spoofing is to inject different coordinates into
existing ADS-B messages in a message modification attack.

2https://www.faa.gov/air traffic/technology/adsb
3https://github.com/osqzss/gps-sdr-sim

ADS-B messages contain a parity check of 24 bits, where
an error correction of up to 5 bits is possible. To modify
the message, the significant parts of the existing message are
either overshadowed by a stronger signal or modified via bit-
flipping [15]. This way, an attacker could perform a virtual
trajectory modification attack and thereby cause discrepancies
between the actual positions and those sent via ADS-B and
therefore received by air traffic surveillance.
Attacks on Sensors. The next threat considered in this paper
is an attack using ADS-B sensors. In this scenario, an attacker
attempts to inject messages into the system either by adding
an own sensor and inserting illegitimate messages through it,
or by flooding particular sensors with a large number of bogus
messages.

III. LOCATION VERIFICATION - LOVE

While various approaches to location verification of ADS-
B signals have been proposed, (c.f. Section I), we suggest a
mask-based approach that can verify whether specific coordi-
nates received from a sensor are legitimately within the range
of coordinates that the sensor is able to sense.

In order to evaluate the recorded coordinates with respect to
signals received by the same and other sensors in the area, we
chose to use the H34 hexagonal geospacial indexing system.
It provides evenly distributed hexagons in various resolutions,
spread over the whole world map. This approach is more
applicable to the scenario than, e.g., a mercator projection
or others, as the cell size is fixed and therefore delivers
comparable results for each cell. Using H3, one can choose
between 16 different resolutions5 per cell. The resolution,
or cell size, defines the total amount of hexagons and the
individual cell size, ranging from approximately four million
square kilometres to one square metre. With respect to ADS-
B signals, which often travel distances of a few hundred
kilometres, several of the resolutions can be disregarded for
being too big or too small. With our approach, we only focus
on the resolutions 2-7 as shown in Table I, as their dimensions
are most fitting with respect of the propagation of ADS-B
signals.

The preparations of the LoVe-scheme were done as follows.
We first acquire a dataset containing ADS-B messages of a
whole day (see Section III-B for details), process them, and
feed them into a Postgres database, which then contains the
sensors that recorded them, and the latitude and longitude
that was contained within each message. We assume the data
set recorded on that day is reliable and a trustworthy basis.
From it, we construct one table, in the following called the
amount table, per resolution, as can be also observed in fig. 1:
It contains the h3id (the H3-representation with respect to
the chosen resolution), calculated from the latitude, longitude,
and respective resolution, together with the sensor ID as the
primary key and the respective amount of messages captured
by the sensor within the area as the third column. The total

4https://h3geo.org
5https://h3geo.org/docs/core-library/restable/



TABLE I
SIZE AND AMOUNT OF HEXAGONS PER RESOLUTION IN THE H3 GEOSPACIAL INDEX AND RESPECTIVE AMOUNT OF ENTRIES IN THE DATABASE

Resolution No. of Avg. Hexagon Sensor-location-pairs Avg. No. of msg. per sensor-location-pair Test time (s) for 200 000 entries
Hexagons Area (km²) OpenSky FlightRadar OpenSky FlightRadar OpenSky FlightRadar

2 5870 86 801.78 9963 26 133 208 721.51 535.43 0.549 0.586
3 41 150 12 393.43 32 339 65 220 64 302.93 214.54 0.602 0.678
4 288 110 1770.35 143 143 223 018 14 527.38 62.74 0.717 0.806
5 2 016 830 252.90 776 226 758 857 2678.98 18.44 1.350 1.322
6 14 117 870 36.13 4 442 948 1 948 721 468.04 7.18 5.138 2.483
7 98 825 150 5.16 25 086 048 3 741 523 82.89 3.74 29.049 4.438

Fig. 1. Sample data from the amount table in resolution 4, sorted by h3id.

amount of sensor-location pairs per resolution for our data
sets can be seen in Table I, as well as the average number
of messages per sensor-location pair. Since the amount of
cells rises the smaller the hexagon area is, higher resolutions
cause a higher amount of sensor-location pairs as well. To
illustrate the message distribution further, Figure 2 shows a
partial map of Europe distributed into H3-cells of resolution
4, with the colouring adapted to the maximum amount of
messages captured by one sensor per hexagon.

A. Verification Approach

Our approach at origin verification of an incoming message
M with coordinates lat and long begins by calculating the
respective h3id for the two coordinates and the resolution.
LoVe consists of the following two phases:

1) Check whether the coordinates correspond to a h3id
in which the sensor has recorded messages before,
using the amount-table. If so, the signal is classified as
legitimate.

2) If not, check whether the specific sensor is known at all
in our dataset.

If a sensor then receives spoofed coordinates that are not
within the range it typically receives coordinates in, we assume
that the message is an illegitimate one.

B. Data Acquisition and Structure

We test our approach using two different data sets recorded
on the same day, July 23rd 2021: The first set was provided

Fig. 2. A map showing parts of Europe covered with H3 hexagons of
resolution 4. The colours denote the amount of messages received by the
sensor that received the most messages in the cell.

by the OpenSkyNetwork6. They gave us access to their his-
torical database, containing the stored ADS-B messages from
their crowdsourced network of sensors. The second set was
supplied by FlightRadar247, a commercial website offering
live airtraffic monitoring. To make our analysis comparable to
others, we limit the range of both data sets to only contain
entries from Europe, with the latitude within the boundaries
of 30 and 75 and the longitude between -25 and 45.

To test our implementation, we required a labelled test set
containing both false and true data. For the OpenSky-data,
we chose the following approach to construct a test set: For
legitimate flight data, we retrieved several hours worth of
ADS-B messages from the following day, July 24th, 2021
and limited the amount to 100 000 randomly chosen true
entries. We additionally generated false test data using the
following approach: For every single sensor in the set, all
coordinates in which a signal has ever been received are
collected. From this set, we determine the minimum and
maximum latitudes and longitudes it can legitimately receive

6https://openskynetwork.github.io/opensky-api/
7https://www.flightradar24.com/
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Fig. 3. Comparison of the test runs using labelled test data sets of OpenSky
(left) and FlightRadar (right), with our LoVe algorithm in resolution 4.

information in. We then add or subtract a uniformly distributed
random float between 0.1 and 10 to or from it, according to
a random boolean8. While this is a very simple approach, it
ensures that the coordinates are outside the range of expected
coordinates and thereby simulates a GNSS-spoofing attack or
an ADS-B message injection attack using false coordinates.
For the FlightRadar24-test set, we were unfortunately unable
to acquire a second data set from the company. Instead,
we randomly chose 100 000 messages as true labelled test
messages and removed them from the original set. For false
labelled messages, we chose the same approach as described
above for the OpenSky data set.

Both data sets are very different in content and structure,
apart from the obvious differences in naming the sensors:
The FlightRadar-set is first split up in flights surveilled and,
for each flight, contains an additional CSV-file including all
sensors that recorded the messages and for each message the
received altitude, coordinates, velocity and others. Once lim-
ited to the aforementioned coordinate boundaries, it contains
14 092 420 messages in total recorded by 11 594 sensors. We
additionally excluded another 100 000 random messages from
the set in order to construct a legitimate test set, which leaves
us with 13 992 420 messages in total, recorded by 11 582
sensors. On average, every sensor in this data set recorded
approximately 1208.12 messages. In this data set, only about
0.18 % of the messages were recorded by more than one
sensor.

The OpenSky data set contains far more messages recorded
by far fewer sensors. This dataset contains 160 526 553 dis-
tinct ADS-B messages recorded by 971 sensors. If the same
message was recorded by different sensors, it was stored
with an array containing all receiving sensors; the actual
amount of single messages is therefore 2 079 492 408, while
the list of sensors that captured one particular message has an
average length of 12.95. Every sensor recorded an average of
2 141 598.77 messages.

8Notice that our approach in generating attacker data can not provide
coherent spoofed values in successive time instants. This is not a problem, as
our approach does not exploit any form of correlation or time dependency.
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Fig. 4. Accuracy and relative time needed to verify location accuracy using
different resolutions. FR denotes results obtained with FlightRadar dataset,
whereas OS those obtained with the OpenSky dataset.

For every resolution, our verification test is performed on a
data set with which a reliable classification can be performed,
as will be demonstrated in the following.

C. Verification evaluation

To test our approach, we use both false and true labelled
data, generated or acquired as described in Section III-B. Our
evaluation achieves very low false positive rates between 0 and
0.001 06 and very low false negative rates between 0.000 65
and 0.003 34 for both the OpenSky and FlightRadar datasets,
as can be seen in Figure 3. The time required to test 200 000
entries vary per resolution and span from 0.549 to 29.049
seconds for the OpenSky set and from 0.586 to 4.438 seconds
for the FlightRadar set, as can also be seen in Table I. The
surprisingly high maximum execution time of the tests on the
OpenSky dataset is directly linked to the amount of sensor-
location-pairs of 25 million in resolution 7.

The overall test results show that test results are best at
resolution 4, while both higher and lower resolutions cause
higher false negative and false positive rates. Larger table size
simultaneously causes longer evaluation times. Both the rela-
tive execution time as well as the respective accuracy can be
observed in Figure 4. The comparison between the FlightRadar
and OpenSky data sets also shows that our solution scales very
well even with a much larger amount of sensors present, as
can be observed in Table I: even a data set containing 10 times
the amount of sensors causes only slightly higher computation
times, since our approach utilises the sensor-location-pairs as
a basis for comparison and does not require to evaluate the
message content.

Other approaches at location verification of ADS-B-
messages require multiple sensors to verify the message origin:
Some attempt multilateration with a reduced amount of sensors
[8], [9], others use ML approaches that require a large sensor
set [7]. While their approaches only work with a large sensor
set, our tests of the FlightRadar dataset show that our approach
is also usable in the absence of a dense sensor network:
The FlightRadar dataset does not contain any mentions on



duplicate entries, e.g., single messages recorded by multiple
sensors. To identify duplicates and see whether other data
analysis strategies like those suggested in [7] are applicable
to this data set, we used the following approach: For every
message, we calculated a hash over several entries of the ADS-
B data field (altitude, heading, latitude, longitude, speed). Only
about 0.18% of the messages had duplicate hashes and had
therefore been recorded by more than one sensor. While the
approaches mentioned above are inapplicable to such a data
set, our approach is not impeded by it.

D. Comparison to ML-Baseline

To establish a speed comparison between the LoVe im-
plementation and a machine learning approach, we chose to
use a Support Vector Machine (SVM), a well known, often
used and easy to implement ML-classifier. As in the LoVe
implementation, we use batch learning mode, i.e. an entire
set of of training examples used offline. We use the same
training data set as for the LoVe classifier but scale the
features (sensor id, latitude and longitude) to a scale from
0 to 1. We parameterize the SVM with values obtained from
a hyperparameter search: C=10 and gamma=4641. Training
the SVM took approximately 48h, since the training time of
SVMs grows quadratically in the number of training samples.
Afterwards, we tested it against a FlightRadar data set with
200 000 data records. 832 of these records were misclassified
(all of those are false negatives); compared to LoVe, the false
negative rate is increased by 0.00491. The false positive rate
and true negative rate stay at 0.0 respectively 1.0.

Testing the 200 000 samples took another 91.3 minutes,
which is demonstrably worse than LoVe. While no training
at all is needed for LoVe, the time to test the samples using
SVM is increased by at least a factor of 6000.

IV. CONCLUSION

The LoVe setup is very flexible, since we do not require
to retrain models but only rely on minimal modifications, e.g.
a sensor can easily be added or deleted from the database
manually. We neither depend on formal groupings of the
messages: While the OpenSky messages are grouped by the set
of sensors that received them, our approach works well with
single messages that were observed only by a single sensor as
well, as shown by the good results on the FlightRadar dataset.

Our suggested approach mainly consists of one database
table per resolution, used to compare new ADS-B messages
to previously recorded ones, and verify their plausibility with
respect to the sender that recorded it. The underlying mapping
scheme that works as the basis for the sensor map makes use
of the H3 hexagonal indexing system that provides intrinsic
functions to modify the resolution and measure the distance
between different cells. This way, we are able to compare
various resolutions and find the best consensus between low
false-negative rate and comparison speed. Additionally, our
approach scales very well, both with respect to a high amount
of sensors, messages and a larger surface area, due to the
following constraints:

• The number of possible cells is limited to a maximum
for each resolution;

• A large amount of sensors can be represented without
significantly impacting the computational cost;

• With a large amount of messages, only the number of
messages recorded per sensor and thereby the trustwor-
thiness of the sensor is increased;

• Since we omit the message content, our system is partic-
ularly lightweight.

LoVe is also privacy-preserving with respect to the location of
the sensor: we don’t require its position, but rather its reception
area. The amount of messages captured does not necessarily
provide information about the sensor location, rather about the
direction the antenna is directed towards. While it is likely that
the actual sensor location is within a reasonable distance of
the area with most messages received, our calculation neither
requires nor performs exact localisation.

Altogether, this makes our approach an easy-to-use basis
that can be extended and integrated into already-established
schemes.
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